
 1 

Extension of MBSE for Project Programmatics 
Management on the Asteroid Redirect Robotic Mission 

Oleg Sindiy, Brian Weatherspoon, Raffi Tikidjian and Tanaz Mozafari 
Jet Propulsion Laboratory, California Institute of Technology 

4800 Oak Grove Dr. 
Pasadena, CA 91109 

{Oleg.V.Sindiy, Brian.M.Weatherspoon, Raffi.P.Tikidjian, Tanaz.Mozafari}@jpl.nasa.gov 

Abstract—Model-based Systems Engineering can be employed 
beyond management of the technical architecture development 
of a system to also manage the programmatics associated with 
Systems Engineering activities of a project.  On NASA’s 
Asteroid Redirect Robotic Mission, MBSE has been successfully 
employed to manage, generate, and interact with the 
documentation-based deliverables associated with System 
Engineering activities.  This has been involved in defining and 
tracking project document, milestone, and personnel metadata 
via the same modeling framework used for the technical 
architecture management.  Additionally, it has focused on 
improving overall user experiences through linkage of 
documentation to technical content in the system model, 
automation of manually intensive tasks, and others stakeholder-
oriented features. 

TABLE OF CONTENTS 
1. INTRODUCTION ....................................................... 1	
2. MODELING FRAMEWORK ...................................... 2	
3. DOCUMENT MANAGEMENT ................................... 3	
4. DOCUMENT METADATA DEFINITION .................... 5	
5. PERSONNEL METADATA DEFINITION ................... 8	
6. CONCLUSIONS ......................................................... 9	
7. FUTURE WORK ........................................................ 9	
ACKNOWLEDGEMENTS ............................................ 10	
REFERENCES ............................................................. 10	
BIOGRAPHIES ............................................................ 10	

1. INTRODUCTION 
While most of the existing literature addresses Model-Based 
Systems Engineering (MBSE) in the context of technical 
architecture development, MBSE can also play a significant 
role in managing the programmatics associated with Systems 
Engineering (SE) activities of a project.  That is, MBSE tools 
and products can also facilitate automation and 
improvements to the overall user and stakeholder experiences 
within a project life cycle.  These same tools can also provide 
a means to manage, generate, and interact with the 
documentation associated with any SE undertaking.  As such, 
while the application of MBSE for the technical architecture 
development of the proposed Asteroid Redirect Robotic 
Mission (ARRM) has already been described in earlier (in 
Ref. [1]) this paper will describe the related use of MBSE in 
programmatics, user and stakeholder experiences, 
automation, and project documentation generation.  
Specifically, this paper will describe how the ARRM team 

has leveraged MBSE capabilities to manage the project 
programmatics such as: 
• document metadata definition for use in document cover 

page generation and for tracking document ownership, 
approval, and release state information, 

• project metadata definition for use of personnel role 
descriptions and assignments, and 

• status of, including release schedule reporting with regards 
to project milestones and of course, access to latest in-work 
and latest approved project documentation. 

Overview of the Asteroid Redirect Robotic Mission 

The proposed Asteroid Redirect Robotic Mission calls for 
capture of an asteroid boulder and its redirection to an 
astronaut-accessible orbit around Earth’s moon [2,3].  
Launching in the early 2020s, the ARRM’s Asteroid Redirect 
Vehicle (ARV) would cruise to a large Near Earth Asteroid 
(NEA) using a state-of-the-art Solar Electric Propulsion 
system.  The ARV would characterize the asteroid with on-
board instruments and provide data to support the project 
asteroid team’s selection of the boulder from several 
candidates.  The ARV would then land on the asteroid, 
secure, and retrieve a multi-ton boulder with the arms on the 
ARRM Capture Module (as illustrated in Figure 1), and 
ascend to an orbit around the NEA. 

 
Figure 1. Artist concept for Asteroid Redirect Robotic 
Mission operations on an asteroid. Courtesy of NASA. 



 2 

With the increased mass of the captured boulder, the ARV 
would perform a gravity tractor asteroid deflection maneuver.  
The purpose of this demonstration is to check the feasibility 
of employing this type of maneuver to protect Earth from 
potential future asteroid impact.  The ARV would then return, 
with the boulder, to a crew-accessible orbit in cis-lunar space.  
An astronaut crew, of the Asteroid Redirect Crewed Mission 
(ARCM), would be launched in the Orion capsule in mid-
2020s to rendezvous with the ARV and captured boulder.  As 
illustrated in Figure 2, the ARCM crew would perform 
extravehicular activities to study the asteroid material and 
collect samples for return to Earth for further investigation. 

 
Figure 2. Artist concept for ARRM operations with an 
Asteroid Redirect Crewed Mission crew and captured 
asteroid boulder. Courtesy of NASA. 

In accomplishing its mission objectives, the ARRM would 
demonstrate the use of new technologies, advance the 
application of existing technologies, and showcase the 
advantages of joint robotic and human space exploration 
programs. 

Summary of Previous Work 

MBSE seeks to provide a single-source-of-truth approach, 
where the content managed in a centralized System Model, 
and its derived products, becomes the de-facto source of 
project information.  A System Model can describe 
constituent components, relationships, interfaces, and/or 
ownership/responsibilities—that is, the technical 
architecture.  The use of MBSE for technical architecture 
development on ARRM can be found in Ref. [1], where the 
paper provided an overview and examples of the targeted 
MBSE deployment for development of the mission 
operational concept, system description, and functional 
requirements.  The core types of SysML elements and 
relationship addressed by the technical architecture 
development in the ARRM System Model are shown in 
Figure 3. 

However, a System Model can also be leveraged to capture 
information on the team organization and responsibilities, 
project risks, schedules, and/or budgets—that is, the 
programmatic information of a project.  Thus, a well-

maintained and content-rich System Model can capture and 
manage both the technical and the programmatic rationale for 
the system design. 

 
Figure 3. Core elements and relationships within the 
technical architecture of the ARRM System Model. 

Reference [1] introduced the use of a versatile product 
reporting infrastructure with both web-based (e.g., View 
Editor [4]) and delivery of traditional products (e.g., reports 
in pdf, lists in tabular files) extracted from a System Model.  
This paper will further elaborate on the use of these for 
ARRM project programmatics. 

Paper Organization 

The first section in body of this paper summarizes the 
Modeling Framework employed on ARRM in support of 
technical and programmatic needs of the project.  Next, 
Section 3 describes the applied Document Management 
process and in compliment, Section 4 describes the 
supporting use of Document Metadata Definition, including 
the related Project Schedule metadata.  Similarly, Section 5 
discusses the use of Personnel Metadata Definition for 
supporting programmatics administration via MBSE.  Last 
but not least, Conclusions and Future Work are provided in 
Section 6 and Section 7 respectively. 

2. MODELING FRAMEWORK 
The selected modeling framework employs System Modeling 
Language (SysML) [5] to describe the technical and 
programmatic content captured in a ARRM System Model.  
The modeling framework employs characterizations to define 
qualitative and quantitative properties and attributes for 
identified classes of elements.  Specific instances of 
programmatic characterizations, and use of selected 
modeling patterns, will be described in subsequent sections. 

Usage of Inheritance Techniques 

The ARRM System Model utilizes a system of inheritance 
(i.e., defining a general class within the model and creating 
specialized versions of that class that inherit the properties of 
the general class) to maintain conformity throughout the 
modelling environment.  This strategy introduces a level of 
robustness into the model, as it allows specialized object to 
maintain the same properties as their generalized object, as 
well as allows for rapid creation of new objects or patterns of 
objects that are intended to extend an already-existing object.  
An example use of inheritance in the ARRM System Model 
is shown in Figure 4.  Here, a general 



 3 

project:ExternalDocument class is specialized by a 
Project:NASADocument and project:JPLDocument classes, 
with Document ID and Revision properties, which are then 
further instantiated into applicable documents to the ARRM 
project.  Inheritance has been used similarly in the 
management of project personnel, project roles, project 
documents, and so on.  Given that the MBSE environment for 
ARRM is a collaborative one, strategic use of inheritance 
techniques has been key in maintaining a robust, uniform 
model over time.  Moreover, this additional uniformity and 
robustness in the System Model database has been key in the 
automation of many modeling tasks; this is discussed next. 

 
Figure 4. This inheritance pattern is used in the ARRM 
System Model in the modeling of reference and applicable 
documents that are referenced in project deliverables. 

Automation of Daily Work 

MagicDraw (MD) [6], the ARRM project’s selected 
modeling tool, contains a plugin called MacroEngine.  This 
plugin allows a model-based systems engineer to build and 
employ automation scripts in areas of their work.  The ARRM 
modeling team has employed this functionality for various 
daily tasks—especially those that previously required 
manual, time-intensive labor.  These tasks include project 
personnel metadata synchronization (discussed in more detail 
later), requirements data management, data migrations 
between tools, and model/element maintenance.  These tools 
have drastically improved the overall MBSE user experience, 
as many of the previously tedious or seemingly 
insurmountable tasks that served as a deterrent to adopting 
MBSE have essentially been automated.  For example, in the 
early stages of ARRM, simply changing the string value 
stored within a specific property had to be done manually.  
While this is trivial in terms of time and effort for a single 
property, occasions arose when hundreds of properties 
needed to be updated with the same value at the same time 
(for example, an entire section of requirements might change 
“Owner” from one role to another; a value that is stored as a 
property of the individual requirement).  This tedious task is 
one that has since been automated—a user can now use one 
of scripts to select all the properties for which they wish to 
change the string value, type in the new string value, and the 
tool will implement all of the changes in seconds (as opposed 
to minutes or hours).  The same functionality has been 
extended to many similar use cases, ranging from element 

and property name changes to entire modeling pattern 
restructures and refactoring.  This automation capability has 
allowed for malleability within the System Model that can be 
leveraged when large, model-wide architectural changes are 
(inevitably, as project needs evolve) imminent and await 
implementation.  Moreover, these tools incorporate 
Graphical User Interfaces (GUIs), which increase the overall 
usability of the tools and allows for use in a more generalized 
sense (i.e., a tool might be able to import any kind of model-
data given that a user is able to enter some form of input 
through the GUI vs.  specific types of data only assuming no 
user input is provided). 

Expansion of Capabilities via Automated Data Migration 

As mentioned earlier, scripting capabilities have assisted in 
facilitating data migration in between tools.  Specifically, 
scripting has been used to facilitate data migration from non-
MBSE, spreadsheet formats (such as Microsoft Excel or 
tabular comma-separated value, csv, files) into the ARRM 
MBSE environment.  Existing functionality, while somewhat 
present in the MagicDraw tool, did not satisfy all the needs 
of the project to allow systems engineers to validly work in 
their tools of choice and still maintain an up-to-date, official 
MBSE single-source-of-truth database.  Specifically, the MD 
capability allows a user to utilize spreadsheet data to create 
and import new elements, but it does not have the 
functionality present that allows a user to import changes to 
existing elements (e.g., changing the value of a property 
without creating a new, additional property to contain the 
new value).  Therefore, as a result of a high learning curve 
that is present with the MagicDraw tool, many stakeholders 
performed the majority of their work in disjoint spreadsheets 
and other forms of Document-Based Systems Engineering 
(DBSE).  The systems engineers (or their designees) were 
initially required to import their work into the MBSE 
environment manually; a tedious task.  To solve this issue, a 
script was created that would facilitate the autonomous 
import of content from Excel, or any type csv file, into the 
ARRM System Model.  While this tool was originally created 
to facilitate a mass transition of spreadsheet-based workflows 
to MBSE-based workflows, it transformed into a tool that is 
used on a daily basis to allow the capabilities of external, non-
MBSE tools to be leveraged in ways that benefit overall 
productivity.  The overall process is illustrated in Figure 5. 

3. DOCUMENT MANAGEMENT 
On ARRM, the majority of project documentation is defined 
and managed in the same MBSE-based environment as the 
technical content.  The documentation process employs the 
DocGen plugin [7] in the web-based View Editor 
environment.  Document titles, sections, tables, diagrams, 
and so forth, are simply just another set of elements in a larger 
System Model that can be used and managed in parallel with 
the technical content of ARRM.  Thus, technical and 
programmatic content can be integrated into documentation, 
and then generated and tracked in real-time. 



 4 

Project-Wide Content Reusability 

Application of MBSE for project document definition and 
management has allowed for reusability and synchronization 
of document content.  For example, through the use of the 
DocGen plugin in the web-based View Editor document 
management environment, document section reuse and 
content cross-referencing has allowed the project to keep 
common information up-to-date, and synchronized, across all 
ARRM project documentation.  Using the MBSE approach 
of a single-source-of-truth, when actively defined content is 
updated by the content owner, the update propagates to all of 
the documents that use it.  For example, content such as a 
high-level mission description can be defined in a single 
document <<view>> (i.e., a document section), and then that 
section <<view>> can then be added (i.e., reused) by many 
documents as needed.  Similarly, the use of cross-referencing 
is paramount to keeping content synchronized and fresh 
across many documents that reference it.  For example, 
document names and terminology definitions can be cross-
referenced across various documents; when the values for 
that content is updated (in a single location), the cross-
references automatically propagate (live update) to all of the 
effected in-work documentation in the View Editor 
environment.  As such, a task that previously required 
extensive manual search-and-replace work, often throughout 
several disjoint document files and by many authors, is now 
seamlessly automated.  Of note:  since, in this environment, 
a single content change can propagate across multiple project 
deliverables, careful consideration should be given towards 
configuration control of content that is reused in multiple 
locations. 

Versatility of Presentation Formats 

In generating documents in a modeling environment, 
document authors are offered additional versatility in 
presenting the same technical content in various forms:  
tables, prose, diagrams, etc.  For example, the same 
requirement title, shall statement, and rationale can be 
inserted (via cross-references) into a paragraph, table, or even 
a diagram (e.g., for parent-child requirement traceability 
flow).  Similarly, numerical values for technical resources 
(e.g., mass, power, data) and programmatic data (e.g., cost, 
dates, authorship) can be called on and inserted into tables, 
paragraphs, or figures of choice. 

Project-Wide Nomenclature Definition 

Leveraging MBSE infrastructure and capabilities, a unified 
periodic collection and reporting mechanism for ARRM 
project-specific nomenclature was developed.  The 
assembled project-wide Nomenclature list consists of 
acronyms, abbreviations, units, and glossary terms.  While 
abbreviations, units, and glossary terms are populated 
selectively—via manual user review and inclusion—an 
automated script was developed to search for the large 
number of acronyms across all project documents maintained 
in the View Editor environment.  The acronym search script 
periodically searches all project documentation.  Once 
elements matching acronym criteria are found, the element is 
compared to existing list of acronyms.  If not in the existing 
list, candidate acronyms are staged for user review for 
inclusion and definition.  The resulting, assembled project-
wide Nomenclature list is referenced by every document by 
insertion of a link to the independent document in View 
Editor, or the list is cross-referenced as a section in a 
document; the decision is left up to individual author’s 
preference, as the ARRM project-wide Nomenclature list is 
quite extensive; it is in excess of 1000 elements and growing. 

Modeled Document Linkages and Usages 

Modeling the project SE deliverables within the ARRM 
System Model has allowed the project to create linkages 
between documents and other modeled elements, including 
requirements, personnel, and project schedule elements.  
While the full range of benefits, that these linkages provide, 
have not yet been leveraged (or even explored), these 
linkages have allowed for additional rigor in deliverables 
development that is generally not present in more traditional 
DBSE processes.  For example, requirements developers can 
leverage the model infrastructure to cross-reference a 
separately modeled deliverable’s name, where necessary.  
Hence, if this referenced deliverable’s name is updated, there 
is no longer a need to correct the name of that deliverable 
wherever it was referenced; that is, this type of change 
automatically propagates. 

Figure 5. Workflow showing how Document Based Systems Engineering (DBSE) tooling advantages can be leveraged 
using automated tools created in the Model-Based Systems Engineering (MBSE) environment. 



 5 

4. DOCUMENT METADATA DEFINITION 
Document Metadata 

With regards to defining document stakeholders, the ARRM 
team created project-specific definitions for ARRM 
document Owner, Approver, Preparer, and Contributor roles 
that are emulated within the System Model.  Within these 
definitions, a role owns or approves a document. 
Additionally, in this environment, the person filling a given 
role can change, over time.  In contrast, a person can 
contribute to, or prepare, a document, regardless of what role 
they fill.  In the ARRM System Model, class objects 
stereotyped as <<arrm.Role>> are related to documents that 
signify owners or approvers, while “characterization” 
patterns are related to documents that signify document 
preparers and contributors (by embedding properties 
containing the person and their role).  The characterization 
elements contain the personnel and role information of each 
preparer or contributor.  Additionally, a given document is 
specified to have one owner (typically, the technical authority 
for the document), and one or more preparers.  Furthermore, 
a document can have many approvers and contributors.  The 
metadata pertaining to an ARRM document deliverable, as 
well as how that metadata is contained or connected, is 
presented in Figure 6. 

Centralized Project Document List 

For ARRM, MBSE is leveraged to maintain the associated 
project technical and programmatic deliverables (e.g., those 
pertaining to interfaces, requirements, and even project 
implementation and IT security).  Metadata for these 
deliverables, such as the current state, release schedule, 
signatories, and identification numbers, are maintained 
within the System Model and displayed on View Editor in the 
form of an ARRM Project Document List (PDL).  This list 

acts as a central deliverables hub for the project, allowing 
ARRM stakeholders to view the latest documentation 
metadata, and even access the latest content (both, in-work or 
officially released), of any deliverable at any time.  
Furthermore, specific personnel (e.g., preparers and owners), 
depending on their roles, are able to interact with the PDL in 
order to make changes and/or add content.  This functionality 
acts as a wrapper that allows non-MBSE experts to easily 
maintain this metadata while preserving its MBSE roots.  
Moreover, the use of MBSE in this programmatic area 
extends the single-source-of-truth infrastructure of the 
project, as this metadata is automatically updated any time it 
changes, and thus, is kept current with minimal maintenance 
beyond that of sustaining the source data. 

Project Milestones, Phases, and Release Schedule 

The project’s milestones and phases have also been captured 
within the ARRM System Mode.  The captured metadata 
includes values for dates, names, and category metadata for 
milestones, and start and end date metadata for phases.  
Within the PDL, the milestone names and dates are used (via 
cross-references) to populate the fields pertaining to a 
deliverable’s release schedule (e.g., Draft Date, Preliminary 
Date, Baseline Date).  Through these linkages, an integrated 
Receivables and Deliverables (Rec/Del) list is generated, in 
real time, in a centralized and easily accessible venue for the 
project stakeholders.  As an example of how this is 
particularly useful for ARRM (and applicable to any other 
flight project), milestones are occasionally changed as a 
project lifecycle unfolds.  In the MBSE environment, by 
simply updating the milestone element with a new date will 
result in an update to the PDL (and all relevant documents) 
with the new date.  As such, this adds additional transparency 
to product delivery expectations when associated milestones 
that govern product release schedules change.  Furthermore, 
much like with the Organizational Breakdown Structure, the 

Figure 6. Diagram of document metadata with relationships used to relate respective roles or persons to the document. 



 6 

environment allows for visualizations of the data to aid with 
quality assurance and completeness.  An example 
visualization of captured ARRM project milestones and 
phases is provided in Figure 7. 

Autonomous, Uniform Formatting of Deliverables 

The ARRM team has also leveraged MBSE to generate the 
front matter (e.g., cover page, signature page, table of 
contents, list of figures, list of tables, list of equations, and so 
on) of model-generated deliverables.  Using the linkages 
from deliverables to roles and personnel mentioned 
previously, the front matter is automatically populated with 
the owner, preparer, approvers, and contributors, as well as 
any provided document metadata (e.g., change log, document 
ID, cover date, etc.).  Additionally, signature lines are 
generated automatically for the owner and approvers.  This 
format template is designed once in the model (using the 
DocGen plugin) and each document is then “plugged in” to 
this format template to generate its own specialized front 
matter based on its unique set of metadata.  Any changes 
made to the core front matter format thereafter are reflected, 
in real time, in all the instantiated documents.  In addition to 
this front matter, some common document formatting is also 
handled autonomously, including document headers and 
footers.  Within headers and footers of ARRM deliverables, 
metadata (e.g., document ID, cover date, page numbers, and 
any marking language) is autonomously populated from 
model content when a pdf-version of a deliverable is 
generated. 

Applicable and Reference Documents 

As mentioned previously, ARRM utilizes a unique modeling 
pattern to capture non-ARRM external documents that are 
applicable to the project.  These documents are modeled as 
simple Class elements that, as specified before, inherit 
attributes from a generalized project:ExternalDocument 
class.  These attributes include the applicable document ID 
and revision used by the project (not necessarily the latest).  
Most importantly, when these documents are modeled for 
reference, the modeler retrieves, when possible, the hyperlink 
to the document that the element represents.  When these 
external documents are linked to project deliverables within 

the System Model (generally in a standardized “Reference 
and Applicable Documents” section), DocGen is leveraged to 
generate a table of these documents with hyperlinks 
embedded.  This allows a reader to have direct access (when 
reviewing the document in a digital format, such as in View 
Editor or pdf) to those applicable documents.  This aids in 
removing human error involved with searching for and 
locating the correct document referenced by the material, as 
often times multiple revisions of the same applicable 
document are readily available to a given reviewer at the 
same time.  Note that no consideration is given to any access 
rights requirements; a user who is reviewing a document must 
have or obtain access to review the applicable documents. 

Document Release Process 

The ARRM document release management process, 
presented in Figure 8, is used to promote the project’s official 
documents from unreleased (in-work) to released (controlled) 
states.  Prior to formal approval, release, and baselining, 
project documents are controlled by the individual 
responsible for their technical content (i.e., owners and 
preparers).  In this process, a document’s author must request 
a document ID from a Configuration Management Engineer 
(CME) and submit a request for a blank document to be 
published to VE by the MBSE team.  Then, when a document 
is ready for review, the latest document and modelled-content 
(where applicable) are published from the System Model to 
VE.  Once the document has been reviewed and any 
requested changes dispositioned, it is ready for approvals.  At 
this point, the MBSE Team creates a snapshot (also called a 
“tag”) from VE and creates a Portable Document File (pdf) 
from the snapshot, which the CME Team submits for official 
approval.  Document approval and release is completed when 
required signatures are obtained using a customized 
workflow in the ARRM’s task management tool.  The 
changing document states are maintained through the model 
system and displayed in View Editor in the PDL.  In turn, this 
allows the project team to view the latest states of each 
document in the PDL, with direct links to the in-work and/or 
controlled versions of all of the listed documents.

Figure 7. Example visualization of project phases and milestones with start and ending dates. 



 7 

Figure 8. Document release process flow, from document instantiation to document release. 



 8 

5. PERSONNEL METADATA DEFINITION 
Over the course of modeling documents and other 
programmatic aspects of the ARRM project, the ARRM team 
found additional value in including project personnel, roles, 
and other pertinent personnel-related metadata in the System 
Model.  Modeling project personnel has allowed the ARRM 
team to capture personnel-related information within the 
System Model, including relationships of personnel to 
documents, requirements, and other technical content, as well 
as maintain a current Project Personnel List (including 
contact information for all personnel) for ARRM project 
members to access and reference as needed.  Specifically, the 
personnel list has provided a central directory for project 
personnel and contact information (regardless of their 
organizational affiliation or location), as well as aided in 
maintaining the project’s Lightweight Directory Access 
Protocol (LDAP) group membership.  This list is viewable on 
View Editor by any project employee; and thus, receives 
consistent feedback pertaining to its accuracy.  Using this 
approach, information pertinent to personnel or roles, such as 
which deliverables a specific person is responsible for, is 
captured and made accessible to project stakeholders in ways 
that are otherwise not possible on a geographically 
distributed, multi-center and multi-organization project such 
as ARRM. 

Roles, Center Affiliations, and Role Assignments 

As mentioned earlier, included in the metadata for project 
personnel is the center for which each personnel works and 
the role(s) each person has been assigned.  On ARRM—a 
mission which spans multiple NASA centers and 
organizations—the inclusion of role assignments and center 
affiliations within the ARRM System Model has been 
particularly helpful in tracking which personnel are working 
on the project, as well as in which areas and what 
organizations and/or centers they work for.  Furthermore, 
since role assignments often change, capturing the roles (and 
all associated information) within the System Model has 
allowed for greater ease in keeping role assignments up-to-
date across the project (and displayed in the Project 
Personnel List mentioned previously).  For example, when a 
role assignment changes from one personnel to another 
within the System Model, all deliverables referencing that 
role as an Owner or Approver automatically reflect who the 
role has been assigned to; a programmatic detail that 
previously was often out-of-date and required manual effort 
to maintain.  While the periodic updating of the role 

assignments is still performed manually, it only needs to be 
done one time within the System Model; rather than many 
times throughout all the various deliverables and supporting 
products associated with ARRM.  The modeling of roles also 
allows for additional gap analysis, as personnel with multiple 
roles or roles with no assigned personnel are now clearly 
shown in diagrams and other presentation elements generated 
from the System Model.  Furthermore, role descriptions for 
each role are captured in the System Model, which allows for 
greater transparency in the responsibilities inherited by an 
individual who assumes a given role on the project. 

Organizational Breakdown Structure (OBS) 

Roles contained in the ARRM System Model are organized 
in a manner so as to represent the Organizational Breakdown 
Structure (OBS) of the project.  Through this organization 
strategy, the OBS can be shown through View Editor in a 
variety of formats (e.g., diagrams, tables, text) and thus, made 
available to the project stakeholders.  A consolidated diagram 
example is shown in Figure 9.  Note that this diagram is 
updated within the MBSE tooling environment 
autonomously once the diagram is initialized, and thus, it is 
consistently up-to-date and requires minimal effort to 
maintain.  This approach has allowed the project to maintain 
a current, up-to-date OBS.  To elaborate as to how the 
metadata is maintained, when a person is added to the project, 
they often (if not always) need access to various tools used 
on the project—this requires LDAP membership.  To obtain 
membership, individuals must make a formal request to the 
project’s Configuration Management Engineer (CME), 
which must include their role(s) on the project and what tools 
they need access to.  Upon approval, these individuals are 
added to the appropriate LDAP groups.  The ARRM System 
Model is autonomously synchronized periodically with the 
ARRM LDAP groups (discussed later), and thus, the ARRM 
System Model reflects these changes in project membership.  
These changes are brought to the attention of the ARRM 
team, which provokes the team to define which role they fill; 
information that is captured in the original request.  These 
roles are assigned, and all applicable diagrams and 
presentation elements reflect the change in content 
autonomously.  This workflow is shown in Figure 10.  
Additionally, filters are employed to generate specialized role 
diagrams as desired by particular stakeholders. 

Figure 9. Example of an Organizational Breakdown Structure diagram generated from the ARRM System Model.  



 9 

 
Figure 10. Process by which role assignment changes are 
disposed on ARRM with the use of MBSE. 

Tool and Automation of Personnel Metadata via LDAP 

Initially, ARRM project personnel and associated metadata 
was maintained manually within the model; frequently 
becoming out-of-date and very difficult to maintain.  
However, this type of data should be drawn from and 
controlled by an authoritative source (such as LDAP).  By 
leveraging the tooling environment ARRM uses to perform 
MBSE, a script was created that automated and expanded the 
modeling of project personnel by synchronizing the model 
with the project’s LDAP groups.  These groups are actively 
maintained by the project via JPL’s institutional 
infrastructure because they govern secure access to project 
resources.  The employed tool creates and updates project 
personnel elements within the model by querying the LDAP 
server for user-specified group membership, as well as 
synchronizes useful metadata (shown in Figure 11) such as 
username, phone number(s), email, LDAP group 
membership, and center affiliation.  This metadata, much like 
the PDL, is displayed on ARRM’s View Editor website in a 
central place that all stakeholders can access.  Furthermore, 
the information is cross-referenced all throughout the System 
Model, extending the single-source-of-truth infrastructure 
into the programmatic realm of personnel management.  In 
this specific case, since metadata is imported from LDAP into 
the MBSE environment and never sent in the reverse 
direction, LDAP effectively functions as the official, single 
source of project personnel information rather than the 
ARRM System Model.  In turn, this is an example of how 
MBSE can employed in a multi-database environment. 
 

 
Figure 11. Metadata managed by the automated "LDAP 
Sync" tool, which pulls the data from the Lightweight 
Directory Access Protocol (LDAP) servers directly. 

6. CONCLUSIONS 
This paper described how MBSE can be expanded to manage 
the programmatics of the Systems Engineering activities of a 
project.  Description of NASA’s ongoing development of the 
Asteroid Redirect Robotic Mission was provided as an 
example of such an application effort for deliverables 
management, with modeling support, for document 
generation and management with associated metadata for the 
project’s documents, schedule and milestones, and personnel. 

7. FUTURE WORK 
A few of the programmatic areas that the modeling team is 
seeking to further leverage MBSE for ARRM are as follows: 

Automation of Nomenclature Term Extraction 

As mentioned before, the ARRM’s nomenclature is created 
within the System Model and displayed on View Editor in a 
central project nomenclature and glossary dictionary that can 
be referenced throughout the project.  Currently, the ARRM 
team has automated the detection of new nomenclature 
throughout model content, as well as the creation of those 
terms within the System Model.  However, the work involved 
with cross-referencing these terms where they are used 
throughout project deliverables has not yet been automated, 
and therefore currently requires a large time investment to 
maintain manually.  Without the cross-references, much of 
the benefit of modeling the nomenclature objects is not yet 
leveraged, as any changes made to this content are not 
reflected everywhere that the relevant term was used.  
Therefore, the ARRM team’s future work pertaining to 
MBSE in the area of nomenclature includes automating this 
cross-referencing process.  This capability will allow systems 
engineers to spend less time populating changes to 
nomenclature definitions/acronyms, as changes to these 
cross-referenced terms will then be reflected anywhere they 
are cross-referenced autonomously. 

Evolving Document Metadata Definition 

In addition to the current metadata captured within the model, 
future work includes capturing receivables; i.e., capturing 
information pertaining to which deliverables are needed for 



 10 

stakeholders to begin or continue work.  For example, the 
ARRM Mission Manager is a receiver of the ARRM Mission 
Plan document.  Capturing this information within the 
ARRM System Model would provide means to track 
“Receivers” similarly to how Owners, Approvers, Preparers, 
and Contributors are tracked in the document management 
process. 

Receivables/Deliverables Schedule 

As mentioned earlier, project deliverables are captured within 
the ARRM System Model in a centralized Project Document 
List.  However, the ARRM System Model has not yet been 
extended to capture the whole list of project deliverables 
(particularly those that are delivered in later stages of project 
lifecycle), so there is ongoing work to model the remaining 
deliverables.  Furthermore, the ARRM team aims to explore 
other forms of display formats for project deliverables, such 
as within a Receivables and Deliverables schedule organized 
by project phase and project milestone. 

Autonomous Cross-Referencing 

As mentioned previously, the actual cross-referencing of the 
Nomenclature and Glossary elements is currently a manual 
task and, consequently, has not yet been extensively carried 
out by many stakeholders.  The ARRM MBSE team plans to 
automate this process within the MBSE environment, so as to 
eliminate the need to manually cross-reference content and 
update manually when content is copy-pasted View Editor-
based documents.  This automation capability will likely 
leverage a script written within MagicDraw using 
MacroEngine (similar to the aforementioned LDAP tool). 

ACKNOWLEDGEMENTS 
This task was managed out of the Jet Propulsion Laboratory, 
a division of the California Institute of Technology, under a 
contract with the National Aeronautics and Space 
Administration.  ARRM is directed through the NASA 
Asteroid Robotic Mission (ARM) Program with funding 
from the Science Mission Directorate (SMD), the Space 
Technology Mission Directorate (STMD), and the Human 
Exploration and Operations Mission Directorate (HEOMD).  
ARM is part of the “Asteroid Initiative” that includes other 
funding from the NASA’s Office of the Chief Technologist.  
The ARRM project is led by JPL in collaboration with 
NASA’s Glenn Research Center, Goddard Space Flight 
Center, Langley Research Center, Johnson Space Center, 
Kennedy Space Center, and industry partners. 

Work described in this paper leveraged MBSE infrastructure 
and processes developed at JPL through Integrated Model-
Centric Engineering (IMCE), Systems & Software Computer 
Aided Engineering (SSCAE), Europa mission, and many 
other institutional processes modernization efforts.  The 
authors thank members of the ARRM multi-center MBSE 
team:  Benjamin Cichy of GSFC, Kathryn Trase, Vicki 
Crable, and Edith Parrott of GRC, and Charles Budney, Carl 
Steiner, Larissa Kupferschmidt, Chrisma Derewa, Farah 

Alibay, Matthew Rozek, Robert Castillo, and Sanda 
Mandutianu of JPL. 

REFERENCES 
[1] Sindiy, O.V., Mozafari, T., and Budney C.J., “Application 

of Model-Based Systems Engineering for the Development 
of the Asteroid Redirect Robotic Mission,” AIAA Space 
2016 Conference, Long Beach, CA, 13-16 September 
2016. 

[2] Gates, M., “Asteroid Redirect Mission Status,” NASA 
[presentation], URL:  
http://www.nasa.gov/sites/default/files/files/20150408-
NAC-Gates-ARM-v8-1_TAGGED.pdf, 8 April 2015, 
[cited 18 August 2016]. 

[3] Gates, M., Stich, S., McDonald, M., Muirhead, B., 
Mazanek, D., Abell, P., and Lopez, P., “The Asteroid 
Redirect Mission and Sustainable Human Exploration,” 
Acta Astronautica, Volume 111, June-July 2015, p. 29-36. 

[4] Delp, C., Lam, D., Fosse, E., and Lee, C.-Y., “Model Based 
Document and Report Generation for Systems 
Engineering,” 2013 IEEE Aerospace Conference, Big Sky, 
MT, 2-9 March 2013. 

[5] “OMG Systems Modeling Language (OMG SysML)”, 
specification, v. 1.3, Object Management Group, Inc., June 
2012. 

[6] MagicDraw [computer software], v.18, NoMagic Inc., 
Allen, TX, 2016. 

[7] Macdonald, M, DocGen (Version X) [command-line 
documentation tool for software products]; available from 
https://github.com/mtmacdonald/docgen. 

BIOGRAPHIES 
Oleg Sindiy received a B.S. in Aerospace 
Engineering from Embry-Riddle 
Aeronautical University-Prescott in 2004, 
and M.S. and Ph.D. in Aeronautical and 
Astronautical Engineering from Purdue 
University in 2007 and 2010 respectively.  
Dr. Oleg Sindiy has been a systems 
architect at JPL since 2011, where he has 

supported development and operations of variety of space 
exploration systems such as:  CubeSats, ISS instruments, 
deep space robotic orbiters, landers, and rovers, and human 
space flight vehicles.  He is currently supporting the 
development of the Information System architecture for the 
Europa mission’s spacecraft.  He was also the initial 
architect for application of MBSE on the Asteroid Redirect 
Robotic Mission concept. 



 11 

Brian Weatherspoon received A.S.  degrees 
in Mathematics, Physics, and Engineering 
Technology from a combination of Citrus 
Community College and Pasadena City 
College in 2016, and has since transferred 
to California State Polytechnic University, 
Pomona, where he expects to obtain a B.S.  
in Aerospace Engineering by 2018.  Brian 

currently supports the Asteroid Redirect Robotic Mission.  
He has been a Model-Based Systems Engineer at JPL since 
January of 2016. 

Raffi Tikidjian received his B.S. degree in 
Computer Science from the University of 
Cal Poly Pomona in 2003, and went on to 
receive his M.S. degree in Computer 
Science specialized in the area of Software 
Engineering from the University of 
Southern California (USC) in 2006.  He is 
presently a member of the Mission Control 

Systems Engineering & Software Architecture group at JPL.  
His interests are in the areas of systems health management, 
simulation and modeling, model based engineering 
technologies, software methodologies and processes, mobile 
and web application user interface design.  He is currently 
the lead for implementing Model-based Systems Engineering 
on the Asteroid Redirect Robotic Mission. 

Tanaz Mozafari received a B.S. in Electrical 
Engineering from Azad Tehran University in 
2000, and a M.S. in Engineering 
Management from California State 
University, Northridge in 2009.  She has 
been working at JPL since 2010.  She is 
currently the Configuration Management 
Engineer (CME) lead for the Asteroid 
Redirect Robotic Mission. 


